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CHAPTER I
INTRODUCTION
1.1 Description of the Problem

The situation frequently to be met in applied statistics is as
follows: we have a set of daté arranged in particular type of clas-
sification and deScribed by a linear function of effects of various
classes and subclasses., Generally this modei is that which Eisenhart
[4] has called Model II, in which all elements except p are regarded
as random variables, although it may frequently be called the Mixed
Model, in which certain of the effects are regarded as fixed rather
than random variables.

Mathematically, however, both Model II and the Mixed Model can
be described by the general model

Y = Xa + Ulbl R Ucbc + e, (1.1
where

Y is an nxl observation vector;

X is an nxk matrix of known fixed numbers;

U, is an nxm, matrix of known fixed numbers;
a is an kxl vector of unknown constants;'
b, is an mixl vector of independent variables from N(o, ciz);

e is an nxl vector of independent variables from N(o, 02).

The citation on the following pages follbw the style of the
Journal of the American Statistical Association.
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The unknown constants 012, cony Gcz and 02 are called the compo-
nents of wvariance. Point estimates of variance components are now
used in many fields of research. They seem to be more appropriate
than interval estimates for many of the examples met in practice.
However, a confidence interval is useful for assessing the accuracy
of an estimate. If the confidence inﬁerval is wide, then little
trust can be placed in a point estimate; if it is narrow, then the
estimate can reasonably be regarded as trustworthy. Estimates do
exist for the variances of the variance component estimates, but
these being estimates, are less religble than confidence intervals
for assessing the accuracy of the variance component estimates.,

Also, they are less informative, since the usual type of variance
component estimaté has a complicated distribution, involving a nui~-
sance parameter.

Most of the published papers on estimating confidence intervals

—e ,_forqthe_componentslof variance-and ratio of variances-are-concerned
with the so-called balanced complete models, such as those with equal
frequencies in the cells or subclaéses of the.one—way classification,
nested classification and with factorial classifications. Usually
the sums of squares of the anélysis.of variance is used to comstruct

- —————the-confidence intervals.--These -procedures-are -not-applicable to
unbalanced models; since the analysis of variance sums of squares in
tﬁis case are not, except for the error variance, distributed like a

chi~square random variable. -

In many instances, however, it is necessary to analyze data



which are described by an unbalanced model. Although such data are
quite common in applied statistics, it has received somewhat less
attention than the balanced cases. This is due to the fact that the
distribution of the ordinary sums of squares of the analysis of
variance is, in geheral, complex, This fact hindered the develop-
ment of a complete-theory for the confidence region estimation of
variance components (or variance ratios). Among the few papers on
this'subject is a paper by Hartley and Rao [10]. In this paper there
is an outline of a procedure to derive a confidence region for the
ratios of variances. T?eir procedure is as follows:

It is obvious that the vector of observations, Y, follows a

multivariate normal distribution with covariance matrix

2, _ 2 ' '
6°H = g [I + Y, ?lUl + ... + Yo UcUc 1, (1.2)
where
_ 2,2
Yy =9y Jo©. (1.3)

The adjoined matrix

M = [X[Ul[ ves [ch (1.4)

is assumed to have as a base an nxr matrix W of the form |

W o= [X|U*], (1.5)
where U% has at leas one column from each Ui'
Let us write the model (1.1) in the form

Y = Xo + U%8 + Z, (1.6)
where

B is a dummy null vector:

Z;= Ulbl + ff. vach + e.



We now obtain the least squares estimates of o and B8

[‘E‘] = et waly. 1.7
B

The covariance matrix of & and B, Z(y), can be partitioned into k and
r-k sections as follows: b

) = WE ST = L0 I, | (1.8)

Define
Ty 1) = Ty (1) = By (1) 217N I (05 (1.9)
Reg = (W'H’]Y)' (w'H'lx)J)"l (W'H'lY); (1.10)
Res = Y'H_lY‘— Reg. (1.11D)

Then the function

~ -1 ~
(n-r) B' 222.1<Y) B
Z(y) = (z-k) Res (1.12)

depends on the vector Y and the y's. It is well known that the sam-
pling distribution of the function (1.12) is én F distribution., Thus
the inequality

Z(y) < F(a; r-k, n-r) (1.13)
defines an exact confidence region for Yis oees Y, if F(a; r-k, n-r)

denotes the 100a% of F for r-k and n-r degrees of freedom.



1.2 Review of Literature.

We have noted earlier that most of the published papers on esti-
mating confidence intervals for the y's are concerned with the bal-
anced complete models. First we will'reQiew the methods available to
construct confidence intervals for the Y's in the balanced model,
then we will discuss Wald's method for comstructing confidence
intervals for the_y's.

Scheffe” [16] discussed the one-way classification and showed
that a confidence interval for Y, can be based on the classical F-
ratio. This procedure is discussed in detail by Eisenhart et al.
[5]. Graybill [7] showed how to test the hypétheéis 012 = 0. This
test is based also on the classical F-ratio; thus when translated to
a confidence interval on Yy it becomes identical to that which
Scheffe” [16] discussed.

A more general problem was considered by Scheffe’k[IS‘J° Let Sl
and 82 be two independent random variates.suéh that niSi/Ui2 (i=1,
2) is a central chi-square random variate with n, degrees of freedom.
The function Sl/eSZ’ where 6 = 012/022, is used to set confidence
limits on 6, If Sl is the Between Mean Sqﬁares and 82 is the Within
Mean Squares in the one-way classification, 6 is equal to 1 + Yq- In
general 0 is a ratio of two‘nonhomogenous linear functions of
Yis cees Yoo He showed that the logarithmically shortest confidence

interval for © exists and is unique although it is difficult to

calculate if nl and n2 are different.



Let us now suppose that S are independent random vari-

1’ k
2

ables such that niSi/ci (i =1, «.., k) is a central chi-square

-a.,s

random variate with n, degrees of freedom. A simultaneous confidence
statement on Y, =-012/0k2 (i =1, ..., k-1) based on the probability

statement Pr[F ] = 1-a, where

11 < F s Fl,2’ vees Fk—l,l sF g s Fk-l,z

Fi = Si/SSk, was derived by Gnanadesikan [6]. When Sl’ cans Sk are

k mean squares of the analysis of variance of the balanced model,
such a probability statement is known as ''simultaneous analysis of
variance'. Computation of the numbers_Fil”and»Fizfi =1, ..., k-1)
requires tedious numerical integratiom. Broemeling'fl]>derived a

conservative confidence region for 6

essy O by choosing Fi and

1 k-1 1
FiZ to satisfy P:[Fil < Fi < FiZ] = 1—ai and 1-a f H(l—ai), We note
in passing that nothing is known about the optimal choice of Fil and

Fi2' The same approach was followed by Krishnaiah [13] to comstruct

2

. . . . 2
a simultaneous confidence region for the ratios o5 /Gi+l

i=1, ...,
k-1). .
Using a randomization device, exact confidence limits were con-
structed by Heally [11]. The resulting confidence limits depend on
the sums of squares of the analysis of variance table and on auxilia-
vy observations on a random variable with known normal distribution.
A consequence is that two statisticians confronted with the same
analysis of wvariance table will in genéral construct different con-
fidence limits.

Green [9] presented an approximate confidence interval for the

expected value of the difference between two quantities which are



independently distributed proportionally to chi-square. However, the
solution is not presented in a form suitable for immediate practical
application. Bross [2] gave a solution to this problem that can be
easily computed, but Tukey [19] pointed out that the solution was
‘wrong and proposed another solution. Huitson [12] has developed a
procedure for the general problem of finding confidence limits for a
linear combination of variances. Huitson was mainly concerned with
the problem of estimating the total variability (that is,Athe sum of
two or more variances). Bulmer [3] indicated Eﬁat Huitson's expan-
sion is not satisfactory in the case of the difference between two
variances and developed an épproximate solution for this case.
Bulmerfs solution is discussed in detail by Scheffé [16]. He point-
ed out that these confidence limits can be seriously invalidated by
non-normality. Appro%imate confidence inﬁervals‘for variance ratios
specifying genetic heritability have been given by Graybill et al.
[8]. This method is applicable to data specified by a balanced nest-
ed model. The heritability first is estimated by a ratio of a linear
combination of chi-square variates to a chi~square variate; then its
distribution is appréximated by an F distribution. A probability
statement is derived based on this distribution.
All eiact and approximate procedures which we have discussed

previously are valid only when the sums of squares of the analysis

of variance are distributed proportionally to chi-square variates.

For unbalanced data the sums of squares if formed by amalogy to the

balanced case do not satisfy this condition; comsequently, the

-



preceding procedures are not appropriate. In a series of papers Wald
proposed a procedure for constructing a confidence region for the
ratios of variances that is applicable to any balanced or unbalanced
data. His first paper, Wald [20], dealt with the unbalanced one-way
classification. He showed that a weighted Between Mean Squares is
distributed proporfionally to a chi—sqﬁare variate. The ratio of
this mean squares to the Within Mean Squares, which follows an F dis-

ribution is used to construct confidence limits on Yq- Later this
procedure was extended by Wald [21] to multiple classifications. A
more general procedure,.which includes the previous two procedures as
special cases, was developed by Wald [22]. According to this proce-
dure for each bi a simple least squares estimates, Si’ and its co-
variance matrix, Vi’ are derived. It is to be noted here, that a
simple least square méans a least square assuming fixed effect model;
thé‘covariance matrix is computed assuming the elements bi are random.
The ratio of the quadratic form

q=(b;' V,"" b.)/(m;-1) (1.14)

to the Error Mean Squares is used to define a confidence region for
the y's. Define this ratio of quadratic forms by Q(q, 52), i.e.

Qlq, s2) = a/s?, (1.15)

where

52 = Error Mean Squares.
Since Wald omitted the proof that Q(q, 32) follows an F distribution,
we will give it here. Q(q, sz) follows an f distribution if thé quad-

ratic forms (mi—l)q and Nes2 are independent and each follows the



chi-square distribution. The last condition is obviously satisfied.

To prove the independence of (mi—l)q and Nes2 let G(q, szlb) be the

conditional density function of q and 32 assuming B' =
bc'] to be fixed. Since b and 82 are independent
c(a, s°[b) = ¢ (a|b)e, (s [b),
where
Gl(qlb) is the conditional distribution of q.
Gz(szlb) is the conditional distribution of szf
But 32 is independent of b thus
Gz(szlb)v= H(sz).
The unconditional joint density function of q and sz is
gla, 57 = [ £ Gyal H(s%)db,
where
£(b) is the density of b.
But
g(q, 3 = H(sH) J £ 6, (alb)ab.
Thus g(q, 32) is the product of density fgnctions of s2

imply the independence of q and sz,

1
[bl s sens

(1.16)

(1.17)

(1.18)

(1.19)

and q which

Wald thought that Vi depends only on A and derived a confidence

limits for each ] separately. Unfortunately, as was pointed out by

Spj¢tvoll [17], the matrix Vi usually depends on Yio o

s Yoo Wald's

method, although it is quite general, is relatively unpopular.

Thompson [18] used Wald's method to comstruct a confidence interval

for Yy in a mixed partially balanced incomplete block design. His

result is complicated unless the design is dual. Spj¢tvoll [17]
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considered a Model II for a two-way classification with interaction

and applied Wald's method to construct a confidencevinterval for the
ratio of the interaction components to the error. He also outlined

the procedure for comstructing confidence intervals for the other

two ratios of variances when the interaction is assumed zero.
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CHAPTER II
BALANCED DESIGNS

In this chapter we shall discuss balanced designs. We shall
~construct confidence regions for the y's in the one-way classifica-
tion, nested classification, two—way'classification and balanced
incomplete block design.. We shall derive the confidence regions first
using the method aeveloped in Hartley and Rao's [10] paper, then we
shall derive the regions using Wald's results [22].

We note here that if the fixed effects and the random effects
are orthogonal the two'procedures ére identical if the following
conditions are satisfied:

(1) The least squares estimator of‘g,"the null vector, is
identical to the simpie"least squares estimator, |

2) vThe Error Sums of Squares when all.tﬁe factors of the model
(1.1) are assumed fixed is identical to Res of Equation (1.11).

Note that when Error Sum of Squares is equal to Res then the two
procedures will be identical if

g z;;lmé =5 Vi, (2.1)
But under the assumption of orthogonality ofithe fixed and random
effects

Zyp 101 = I,5(v). (2.2)
Now condition (1) above impiies that

var(B) = var(ﬂ), (2.3)

We know that var(B) = EZZ(Y),. (2.4)
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Therefore
é*z;§.1<Y)s =5 v g, (2.5)

2.1 One-way Classification

Let us suppose that we have r classes and s observations in each
class. We can write the model as follows:

Y=1u+Ub +e, . - (2.6)
where

1 is an nxl vector whose elements are unity;

A(D
U= .

A(r) [nxr
A(k) is an sxr matrix whose elements, aij’ are defined as fol-

lows:

& = 1 for all i

a;; =0 for all i and j ¥ k.
It is obvious that the covariance matrix of the observation

vector is a block diagonal matrix
0% = 0% Diagl(L + v;3), ..., (T +y,D}, (2.7)
‘where J is a matrix whose elements are unity.

By direct multiplication it can be verified that
71 71

1+sy; T 1+ sY,

Following Hartley and Rao's [10] procedure which was discussed

gt - Diag {(I - Iy eeey (I I}, (2.8)
in chapter I we choose the matrix

W= [1]u*], (2.9)

where



A(L)
Uk = .
A{r-1)
_~J nxr-1

J is an sxr-1 matrix whose elements are unity

A(k) is an sxr-l matrix as defined previouély,

(2.10)

as a base matrix. It can be easily verified that the normal equa-

tions for estimating u and the dummy null vector B are

1 rs 0 -ﬁ - 1
1+ sY4 0 s(I+J) B 1+SY1

where

Yi is the total of the observations in the ith class,

»

You = Yl. + cas Yr.'

ae s |

(2.11)

(2.12)

13

After simple algebraic manipulations the solution to the normal equa-

tions may be put in the following form

Y../rs B
[ﬁ] _ <Yl. - Y../t)/s
B :
_‘Yr-l, - Y../r)/s

- The Reg and Res quantities are

Reg

Res = Y'Y - (ZYi )/s.

The covariance matrix of the estimates in equation (2.13) is

: _ 1/rs 0
2t = [: 0 (1/¢)(I - 1/x3) |

and thus

[1/L + syp)] [v2./rs + (zYi.,“ Y2./1)/s1,

(2.13)

(2.14)

(2.15)

(2.16)



ZE%,1<Y) = [s/(1 + sy ]I + 1. (2.17)

Substituting in equation (1.12) it can be easily verified that

r(s - 1) (¥, - Y../D%/@ - D

z(y) = . (2.18)

s(1.+sy)[Y'Y - 5¥2 /s]-

After simplifications the confidence "interval for Yy becomes

r(s - 1) (Y, - Y.,./r)2
1/s L. -1 £ Y4
(Y'Y - IY, /8)F, (r - 1) '

+

(s = 1) (Y. - Y../0)°
< 1/s 5 Le -11]. (2.19
s(Y'y - ZYiv/s)Fl(r -1

This confidence interval is identical to the.classical analysis of
variance interval discussed in Scheffe” {15]. Equation (2.16) shows
that the fixed effect, in this case the mean, and the random effects
are orthogonal. Thus Wald's procedure will yield the same confidence
interval since the estimate é in equation (2.13) is identi-

cal to the simple least squares estimate ané the guantity Res of

equation (2.15) is identical to the Error Sum of Squares.
2.2 Nested Classification

The balanced twofold nested classification components of vari-
ance model is defined by the model

Y = ly + Ulb

L+ Uy, + e, (2.20)

where

1 is an nxl vector whose elements are unity,



g

Lézr) rstxr

Uy

?

A(k) is as defined previously,

U, = Diag {B, ..., B},

2
A(1)

B = : .
A(s) |stxs

The covariance matrix of the wvector of observations is

2. 2. 1 ]
c“H = o°[1I + leljl + Yy UZUZ]’

where
Voo TN
UlU1 = Dlag{Jstf e Jst}’
T Ty
u,U; Dlag{Jt., ceesd T
By direct multiplication we can verify that

where

-1 = ' v 1
H I+ 91 UlUl + 92 U2U2,

-y
_ - 1
1 1+ ty ) (1 + ty, + styl)

3

=Y,

e =t

choos

where

2 1+ ty,

Following the procedure described in Hartley and Rao

e the base matrix

@ = I1]uz[vsd,

15

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
(2.27)

(2.28)

(2.29)

[10] we

2.30).
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A(L)

UF = : (2.31)
Alr-1)
-J rstx(r-1)

Uk, = Diag{BA*, eee, BE}, (2.32)

[a

B% = : , (2.33)

A(s-1)

-J _|stx(s-1)
and the submatrices in eqhations (2.31), (2.33) are defined earlier.
It is convenient to divide the dummy null vector B into r-1 and

r(s-1) subvectors as follows

B
1
B = -
[Bz:l (2.34)

The normal equations for the least squares estimation of p and B are
given by (2.35). After a simple algebraic manipulation the solution
of the normal equation is given by (2.40). It is easy to verify
that the quantities Reg and Res are given by equation (2.41) and

(2.42) respectively.

! ‘—SY.-.O 7]
6<Yl.. - Yr..)
G(Yr~1.. - Yr..)
L+ 0y - ¥ )
Srst 0 0 s .
0 &st(T +J) 0 8 _ (L+te))(Y,__, =Y )
0 0 - L+ t62) c "1 | = 2 ,18 1. 1s.7{(2.35)
8, :
a-+ tez)(le, - Yrs.)

LY
@

-+ t62)(Yrs-—l° " Yig)

Is.



where

it

-1
1+ tyz + styl) ,

is the total of observations in the ijth subclass,

=Yy, % et Y,

—iY.;./rst

°
@
°

(Yr'—l ae

1

(¥

L‘Yrs-l. T.

(Yl -Y.../r) /st

- Y../r)/st
¥y, — Yy, [e)e

(g1, = ¥p,./80/¢
r1. " e, f8)/E

Y /s)/t

Diag{(I + J), ..., (T + D7,

17

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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2

~ Y., 1 2 2
Reg - rSt(l + tY, + sty ) + St(l + Y, + sty ) [ZYi.‘ - Yaee/r] -+
2 1 2 1 ,
1 2 2
e+ oy g, T T /80 (2.41)
' 2

It can be easily seen that the covariance matrix of the estimates

in equation (2.40) is

1+ ty, + sty _ ]
2 L 0 0
rst
z (y) = 0 222(Y> 0 s (2.43)
B 0 0 233(7)_
where
1+ ty, + styl
222 (v) = vy (1 - l/rJ), (2.44)
1+ ty ,
233 (Y) = t Diag{cI - l/SJ>, os ey (I - I/SJ)}' (2-45)

The mutual orthogonality of i, él and éz enables us to derive
several confidence regions. These confidence regions are identical
to the regions derived from the analysis of variance table. Wald's
method gives identical confidence regions. This is obvious since the
estimates fi, él and 32 are orthogonal to each other and identical to
the simple least squares estimates and the quantity Res defined by
eqoation (2.42) is identical to the Error Sum of équares in the

analysis of variance. Let us now give the confidence regiomns.

(1) A confidence interval for Y, may be based on the function
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rs(t - 1) B! .21 () 8,

N 2 733
Zl(YZ) B r(s -~ 1) Res ) (2.46)
It is readily seen that
rs(t - l)[ZYij - EY? /s] .
209 = TX@ v oy, £G - D Res (2.47)

and the confidence interval for Yo is’

rs(t - l)[ZYij - ZY? /s] -
1/t rt(s - 1) Res F2 -ls Yo 2

rs(t - 1)[zyij_ - ZYE...S] |
1/t rt(s - 1) Res Fl -1, (2.48)

(2) A confidence region for,yl and Y, can be derived from the

function
~ —1 ~
: rs(t - 1) §£ ZZZ(Y) 81
22<Yl’ Y2) = - (r - 1) Res : (2.49)
After simple algebraic manipulations we obtain
rs(t - DIY2 - Yh../z]
Z2<Y1’ Y2> = (r - 1)st(l + tyz + styl) Res ?* (2.50)
Aand
rs(t - DIYe - Y /r] -
st(r - 1) Res F, S L1+ty, sty <
rs(t - 1){ZY§ -Y%../e]
- - : e (2-51)

-st(r - 1) Res Fl

(3) Another confidence region for Yy and Y, can be based on the

function
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rs(c - 1[B] 15500 By + By 535 B,

(rs = 1) Res )

23(71, Yz) = (2.52)

Simplifying (2.53) we get

i . i3 i..
rs(t - 1) st(1l + tY, +-styl) t(1l + tyz)

(rs = 1) Res .

(2.51)

The confidence region is defined by the inequality

(rs = 1) Res F, ZYi - Y?../r zyij - zyi /s
rs(t - 1) = st(l + ty, + styl) + t(l + tyz) <

(rs - 1) Res F2
rs(t - 1) t

(4) Finally a confidence region for Yy and Y, can be derived

(2.54)

from
r(s - 1) B ZZZ(Y) B,
2, (vs ¥y) = - , (2.35)
AT e B atien B
2 "33 2
or from its inverse
1 (2.56)

Z-(Yys Yo) =
501 2 Z,(vys vy)

After simplifications we see that the confidence region derived from

(2.55) is defined by the inequality

2

2 .
cst(r - l)[ZYij. - ZYi"/S] F ) 1+ty, )
2 2 = -
tr(S - 1) [ZYiG. il Yo.m/r] 1 -+ th + StYl
st(r - D[rY;, - 1> /sl F,
’ZJQ 5 s _ (2.57)
tr(S - l)[zY. - Yoo./r]

Lo
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2.3 Two-way Classification Mixed Model without
Interaction

The two-way classification Mixed Model without interaction is
specified by the mathematical model

Y = 1u%¥ + Tt + Ub + e, (2.58)
where v

1 is an nxl vector whose elements are unity,
I
T = : Y . (2-59)
| B_|rstxs
P—A(l)-
B = : (2.60)
| A(s) _|stxs

TA@) 7]

v=lo : (2.61)

__Azr) _|rs txr
The matrices A(k) are defined previously. Let us note here that T is
a vector of fixed elements aﬁd b is a vector of random elements. It
;s well known that the matrix T is not of full column rank; thus in
order to apply the procedure described by Hartley and Rao [10] we need
to "reparameterize" the model (2.58). This might be achieved by rede-

fining the model as follows

[

Y

where

1y + Xa +Ub + e, (2.62)

it

u = p¥* + Zri/s, (2.63)

a is an (s = 1)x1 vector whose elements o, are defined as
follows:

o, =T, - Zri/s, (2.64)



_Bv'c

. 9
_B* |rstx(s -~ 1)
A(D
B* . s

A(s - 1)
=J stx(s - 1)

]

Now we can apply the procedure to the model (2.62).

The covariance matrix of the observations is

% = o2 Diag{ (I + le), ceey (I + le)},
and
Y Y
-1 , 1 1

Let now choose W as a base matrix, where
W= [1|X]U*],

ASl)
U = .
A(r - 1)
-J rstx(r - 1)

22

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

It can be easily verified that the normal equations for the least

squares estimates of u, o and the dummy null vector B are

rst . T -
E*;fg;;; 0 0 o] {Y.../(1 + stYl)
0 rt(I + J) 0 al [Y.1. " Yis.
. - 3
0 0 St a+5 |8 :
1+ styl - Y -y
.S-l. ‘thg e
Yl,, B Yr.°
1+ styl
Yr—l-e - Yre
| 1_+ StYl _
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(2.71)
where
Y i is the total of all the observations that received the
jth fixed f,actor,.
Yi is the total of all the observations that received the
4 ith random factor,
Yeso = Yl.. U +'Yr..f
Solving (2.71) we obtain
T Y.../rst B
N I - |
6| = | Woguq, = Yeuo/sd/rt (2.72)
—té (Yl.. -Y'sv/r)/st
L(Yr—l:. - Y.../r)/st_
It readily seen that
72 1 .22,
Reg = rst(l + styi) t e [ZY.j. - Ye..7s)
1 2
: i 2 2 2
Res = Y'Y - XYi /st - LY 3 /rt + Y.../xrst, (2.74)
-1 _ st
222,(Y) = TF stv. StYl (I +J). (2.75)
The confidence interval is based on the function
ay =1 ~
(rst =z - s +1) B oy l(Y) B
- (2.76)

Z<Yl)' R (r = 1) Res *
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‘After simple algebraic manipulations we get

—

1 (rst - ¢ - s + l)(ZYi - Y?../r)
st st{r - 1) Res Fz -1 = Y1
(gst = ¢ - s + l)(ZYi - Y?../r)
s st st(r = 1) Res F -1 ° (2.77)

. 1

It can be readily verified that (2.76) yield the classical F
ratio. Thus the inequality (2.72) can be obtained from the andlysis
of variance table. We note that the fixed elements and the random
elements of the model (2.62) are orthogonal, furthermore conditions

(1) and (2) on page 11 are satisfied. Thus Wald's procedure will

yield the same result as in (2.77).
2.4 Two-way Classification Model II without
Interaction

The model of the two-way classification Model II without inter-

action may be written in the following form

Y =1y + by + Uyby+ e, (2.78)
where

B

Ul = { . . (2.79)
[__B rstxs
TAQ)

B o= | ° , (2.80)
|_A(s) |stxs

and
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A(D)
U2 = E ’ s (2.81)
_A(r) _jrstxr '

The matrices A(k) were defined previously.

To find the covariance matrix of the observations, it is con-

venient to define

D ixst = Diag{tht, ey tht}, (2.82)
I-n' I

J(I) = cen s . (2,,83)

I+ I _|rstxrst :

where I is the identity matrix of dimension st. Now it is readily

seen that the covariance matrix is

GZH = 02[1: + vy Diag{D,..., D}J(I) + ') Diag{J,..., J}]. (2.84)

To find H-l let us write H in the following form

. : . ey
H = Diag{(I + Yod)s oees (T4 YzJ)}[I + YlDiag{(D - -1—1—-2—5—{-— Iy eees
. | "
tYy.
® - Tyog, VP IMI. @2.89)

By direct multiplication it is easy to verify that

- Yy L) : -1

[I+Y1Dlag{(D “'-l——_-‘_——s—E-Y';J), sens (DfWJ)}J(I)]

is equal to

N . tYy
[T - o5y Deel O - Ty ey, P e
1 1 2
th
(D J)}J(IH>(2~86)

T 1+ rty; + sty,



Thus it is readily verified that

B = -y PeslO - Ty weey, 0
1 . 1 2
Y2 " . T2
(D - l + rt,Yl + Sth J)}J(I>] Dlag{ (I - mz J)s seoy
'Y2 .
(1 -1—;-';&—2-3) 1. (?.87)

Following the procedure described by Hartley and Rao [10] we

choose )
= %
W [1[U1[U§], (2.88)
where
B*
Uf = . . (2.89)
_B* rstx(s = 1)
A(L) 7
B* = . ' . (2.90)
A(s - 1)
_-J _Jstx(s - 1)
AL ]
us = | , (2.91)
Alr - 1)
_=J _rstx(x ~ 1)

as a base matrix.
It is convenient to divide the dummy null vector § into two

subvectors of dimension s -« 1 and r - 1 as follows

B = (2.92)

26
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Now it can be easily verified that the normal equations for the

estimation of p and the dummy null vector B are

Y. ]
_ ot o 1+ rtyl + sty2
1+ rty, + sty 0 0 JW ?1.‘Y$.
1 2 ———————
1+ rty1
rt N
0 1+ rty [T+ J] 0 Bl = . »
1
Y -Y
ot ) .5—1, .S
0 0 T3 sth[I +’ J] lfz 1+ rty,
— - Y -Y
l.. T
1+ sty2
Yr—-l.° -
3.+ sty2 _
(2.93)
where
Y j is the total of observations received the jth random
factor of bl

Yi "iégﬁhé-total of observations received the ith random

factor of b2

Y =Y +...+Yr . (2.94)

cea 1.. e

- —Solving the-normal.equations (2.93) and simplifying we obtain

[~Y.,;/rst
«—-~--—"(Y'1° - Y.../s)/rt

0 :

él _ (Y,Sml, - Y.../s)/rt (2.95)
) (¥, = Y.../r)/st

62 ® e

] oo

(Y Y.../x) /st

r-lo L)
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2 .
Ynu- 1 2 . 2
Reg - I'St(l + rtYl + Sth) + rt(l + rt’Yl) [ZY. .. - Y..Q/S]
1 2 2
Y@ sty i, T T /el (2.96)
1 4+ rty
2 1
o1 ' Y, RS styz) 2
YH Y =YY~ [ - : £Y?
. 1+ sty, a+ rtYl?(l + Ty, + sty,) ‘1.,
1 2
T+ roy; [ZYij_ *Zidg I Yo, ij.]
1+ rty
2 1
tYl(l T 1+ styz)
+‘(1 + rFYl)(l + rey; + sth) 2:i+j .. Yj.. * (2.97)
Res = Y'H 'Y - Reg. (2.98)

From (2.88) it is readily seen that the covariance matrix of the

estimates (2.95) is

1+ rtyl + sty2
0 0
rst i
I(y) = 0 222<Y1> 0 R (2.99)
B 0 233(‘12)“
where
1+ Tty
222(y1> = (I - l/sJ]f (2.100)
1+ styl
233(72) = =3 [T - 1/x3], (2.101)

It is possible to derive several confidence regions for Yy

and Yoo
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(1) A confidence region for Y. and YZ can be based on the

1
function
(rst = ¢ - s + l)[Bl 22(Y1)8 + 82233(Y2)B 1
zl(Yl’Y2> = (r + s ~ 2) Res ° (2.102)
This function can be simplified to
rst - r —-s + 1._.2 2 .
re(l + rtyl) IZY.j. - Y.../s]
Z1Grgevyp) = (r + s - 2) Res
rst - r -~ s + 1 2 2
Cst(l + styz) [ZYi.. - Y./l
+ . (2.103)

(r + s -~ 2) Res
(2) It can be easily seen that the functions Zz(yl,yz) and
ZB(Yl’YZ) given by (2.104) and (2.105) follows F distribution and

thus a confidence regions may be based on them.

. 211 2
(rst - r=s + 1) BiZ,; (v{)B

ZZ<Y1’Y2) = (s = 1) Res (2.104)
. "~ __l A
. (rst - r - s + 1) B'Z..(y,)B
| B 2233(Y2?8)
ZB<Y1’Y2> B (r = 1) Res * (2.105)

"It is easy to verify that Z (Yl’Yé) may be simplified to (2.106) and
zZ (yl,Y2) to (2. 1072

rst s =s +1. 2

2
,. rEQ+ Foy,)  1iX.g, T Xeee/sl
ZZCY:L’YZ)_ = (S - l) Res @ (23-106)
Cyst g = x4 1. 2 2
st(l + styz) [ZYi}._“;Yfff/r]
A (YlaYz) = (r _ l) Res ® (2@107)

(3) It is readily verified that the quadratic forms

_ a1 o1 -
ql(“{l) = 81 ?22(Y1)61 (2.108)
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and

~

) -1 )
q,(vy) = By Zg3(v,)8, (2.109)
are independent and each is distributed as a chi-square with (s - 1)

and {r - 1) degrees of freedom respectively. - Thus the function

24(Y1’Y2) = qz(vz)/(r - 1) (2.110)

or its inverse
ZCryors) = 12, (ypov) 17t (2.111)
511212 4311272 :
follows F distribution. Either 24(Yle2) or ZS§Y1’Y2) can be used to

derive a confidence region for v, and v,. We derive the confidence
1 Y2

region based on»Z4(Y1,Y2). Z4(Y1’Y2) may be simplified to the form

(r - Dst( + sty,) (T, - Yo../s) |
Z,(vy5¥,) = = S . (2.112)
(s =~ Drte(l + rtyl)(ZYi - Y .../t)
Thus the confidence region is described by the inequality
. 2 2., o e 2T
(s - l)r(ZYi. = Xi../r) 14sty, , Cs,v.llr(ZYi_ - Y... /1)
1 2 2 . s F | =

(r - DsGY’, -¥o../s) L4ty ©(x- l)s(ZYZj. - Y2../s)

3.
(2.113)
It is to.be noted that the least squares estimates éf ﬁ and 8
are identical to the simple least squares estimates, but the quantity
Res defined by equation (2.98) is different from the Error Sum 6f
Squares in the analysis of variance assuming fixed effect model.

Thus Wald's procedure [22] yields a different confidence regions.

Let us derive Wald's confidence regioms.
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As in Hartley and Rao's [10] procedure, Wald's procedure pro-
. vides several confidence regions, some of them are.intervals for a
éingle Y. We denote by ESSq the Error Sum of Squares assuming fiﬁed
model. Since the simple least squares estimates of u and B are
identical to least squares estimate, we know that’

var(B;) = E,5(vy)s |

and

var(éz) = 233(71), (2.115)

where % ) and ¥ ) were defined by equations (2.100) and

2271 33(Yg

(2.101), respectively. Thus confidence regions, or intervals, de-
rived from'Wald's procedure may be based on the following functions.

(rst = r - s + 1) qq

2,0r) = T Ty EsSq , (2.116)
(rst = r - s+ 1) q,
(rst - r - s + 1)(ql +‘q2) )
ZS(Yl’YZ) B (r + s - 2) ESSq ’ 2.118)

where 4 and q, are defined by equations (2.108) and (2.109),
respectivélyo
It is readily seen that zl(Yl)’ Zz(yz) and Z3(Y1:Y2> can be

simplified to

(st = x - s + DQY, | - ¥2../s)

210 = wE=Da = rey,) ESSq ’ (2.119)
(rst = r - s + 1)(2Y§ - Y2, /1)

2,()) = St =D sty;) ESSq > (2.120)
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2 2 2 2

TY 5. " Yo, £YS - Y5/t
(rst - x - s+ DI Tty t St F sty ) ]
Z3<Y15Y2) = B ®
. (r + s - 2) ESSq
(2.121)

It is clearly seen that Zl(yl), Zz(yz) and ZB(YI’YZ) may be
“derived from the analysis of variance table; thus Wald's procedure

and the analysis of variance procedure are identical.
2.5 Balanced Incomplete Block Design

In this section we assume that the data are described by a bal-
anced incomplete block design with block considered random.

It is convenient to start with general two-way classification
Miked Model with unequal numbers per subclass and without interaction.

The model of such design is

Y =1y + Tt + Ub + e, (2.122)
where
Bl
T = : 3 (29123)
r |n.. XS
A(l)ni‘xs—w
Bi = . . (2.124)
A(S)nisxs n, Xs
— i.
-AGinxrﬁ
U‘= : 5 (23125)
A(r)nr Xr |n xr




n,. = the number of observations in ijth cell,

N, T 0., T es. + 0.
i. il is.
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(2.126)

(2.127)

The covariance matrix of the observations is a block diagonal

matrix
02H = 02 Diag{ (I + v J) (1 + v, J)}
nl. 177% *°° 2 Mar, 1
and its inverse is \
oy t.1 Diag{ (I ‘1 J) (z !
= -~ T ? A ] -~
02 02 1+ nl,Yl 1+ nr.Yl

Let us define the matrix X as follows
X = [1]|T]|Ul;

Then it can be easily verified that the normal equations

i
| = xuhy,
B

where B is a dummy null vector, may be simplified to

- oy Bimy o iy
WE ety g Ede Lty ap e
T T L I S N R I A T
R n, o n, R n,, ' Y,
u @ + ET. 13 ) ,

—_—+ p, = -
1+ ni Yl il+ ni.Yl P 3 1_+ ni.Yl 1+ ni.Yl
i= lj seog S’

n,. -

h o+ TR e Bl - -
Why 28, 77 n, v + itk S = Y 5. T By

where

. R,
h = Z .._.__.:EJ.__.._ )
j . 1+ n,
- i i.'1l

?

(2.128)

AR

(2.129).

(2.130)

(2.131)

(2.132)

(2.133)

(2.134)

(25135)



#
o
i
M .
Heo N
P

C.. .
i3 3 il +mg vyl

S ik 1
jk il+n .Ylg
_ ni. Yi
g, = YqI Tt
i 1”1+ n; Yy
Y. =
l..
Y, =
<3

total of observations in block i,

total of observations that received treatment j.
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(2.136)

(2.137)

(2.138)

(2.139)

(2.140)

Now we will specialize the two-way classification with unequal’

numbers per subclass to balanced incomplete block design with the

following parameters:

Vv is the number of treatments,
b is the number of blocks,
r is the number of blocks containing any treatment,

k is the number of plots per block,

A is the number of times any two treatments appear together in

the same block.

Now it s easy te wyexify that

h, = e
-d 1A+ kyl
1 r (R"—“I)Yi
.cjj = 1 + le T
N Y (
S T T ATE I
11

(@2.141)

(2.142)

(2.143)

(2.144)
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The normal equations (2.132), (2.133) and (2.134) are readily

simplified to

fi bk —  + Zé k -+ r Y"’ (2 145)
T+ky, il+ky 33T+kyg 14Ky’ °
Y
.k 5 k . 1 _ 4
ST TR T e Ty TR, T T (2.146)
1 1 1 1
i=1, eaey Ty
N Ay
T - 1 1 1
e 1+kyl+§einijl+kyl T Ky, L $ T+, Y58y
(2.147)

To solve the normal equations (2.145), (2.146) and (2.147) we
shall rewrite (2.146) as follows:

Yi 1
(f + Bi) = — - =I% n,

" Kt (2.148)

and (2.147) in the following form

.
r.

. T+ vy
Enij + Bi) = (1 + le)(Y.j - gj> - 1—;TEFI—.?j + ZTj AYq s (2.149)
From (2.148) |
g, (0 + By = %Znini_ - - SL (2.150)
Setting

Zt, = 0 (2.151)

and equating the right hand sides of equations (2,149)‘and (2.150)

we obtain



1
T, ==Y ., -—2n,, Y, ).
k ;4] 1.

Substituting (2.152) in (2.148) we get

and

i . 1] o]

R T
BB, = - X;—-in.. (., -

From {(2.145), (2.152) and (2.153) we
~ Y.,
‘“ bk’
Y
P o=t _Y..
B: =% bk A gniJ(Y.J

Using the model (2.122) we can prove easily that

var(—r-) = 1_(-(_'\_7_‘_2‘__1_)_ 0—2 s
J Av
s k2
cov(rj,rk) = - sz a” -
2y = g2 (b= 1)
var(g;) = ¢° ~——= (1 + ky,),
covcsi,sj) = - @+ k),

A A

COV(u,Ti)

0,
cov(u,8,) = 0,
cov(rj,si) = 0,

It is easily seen that
2

Reg = =¥ k.2 1

vk(l + ky,) T ZY,j aber e

l---En,, Y,
k 51 4.

have

- l-Zn.,Y. ).

k 3 13 i,

(k + 1)v;
1+ kyl

).
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(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)
(2.159)

(2.160)
(2.161)

(2.162)

1 £n,.Y .Yi.
R X R
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Y
1 k-2 2 : 1 2
+ TF k"{l (l + | e )ZYi./k + m) ?(iﬂini./k) ’ (2.163)
Yty = vy - 1 Iy’ (2.164)
1+ ky, 1.7 )
H "'l
Res = Y'H "Y - Reg. (2.165)

From equations (2.158) and (2.159) we can write the covariance
matrix of B as follows

2
2erp) = &+ kyIT - %—J]. (2.166)

It is readily seen that a confidence interval may be based on

the function

k(bk = b - v + 1)§§§
z(vy) = @F By - 1) Res

(2.167)

After simple algebraic manipulations we obtain the confidence inter-
val

k(bk - b -v+l)28§_ k(bk - b —v+1)zei

A A
where
vy B 2 1 _ kK = Ay w2 g o2
A=Y - 5T =S I Y, Y g - (kS5 T fk - YNk,
(2.169)
—viv K 42 1
B =7Y"Y v Y.j +-E1; (2K + 1) nini.Yj.
k- A 2 . L 2
" Tow oYy Ik v § <§. ng ¥ /0% (2.170)
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The least squares estimates (2.152), (2.154) and (2.155) are
identical to the simple least squares estimates; thus the covariance
matrix of B is given by (2.166). We can derive Wald's confidence

interval from the function

2
k(bk -~ b - v + 1)z§i

2;09) = g% ky) (e - 1) ESSQ’

(2.171)

where ).

- Y'Y - TY2 /k - Byl - & 2

ESSq = Y'Y - ZYi{/k . AVZ(Y-J kznini.) , (2.172)
is the&rror Sum of-Squares assuming fixed effect model. It can be
easily seen that Wald's confidence interval is given by the
inequality

~2 a2

1 k(pk = b = v + l)ZBi 1 k(k - b - v + 1)zsi
o F,(b - 1) ESSq -1l sy s gl F, (b - 1)ESSq

- 1].

(2.173)
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CHAPTER III
UNBALANCED DESIGNS

In this chapter we shall consider two unbalanced designs. First
we shall comstruct a confidence interval for Y, in one-way classifica-
tion with unequalAnumbers per sub class. We shall see that Hartley
and Rao's [10] confidence region is identical to a confidence inter-
val derived by Wald [20]. Then we shall consider an unbalanced nested
classification with unequal levels of the secondary factor and un-
equal numbers of obserYations per secondary factor; Three confidence
regions for Yl and Y2 will be derived based on the procedure outlined
in Hartley and Rao [10]. Wald'srg22] confidence region for Yy and Yy
will be derived by two methods then a confidence region for Y, will

be derived via Wald's [Zi] procedure.
3.1 One-way Classification

The general one-way classification model with unequal numbers

per subclass is

Y= 1lpy + qlbl + e, (3.1)
where A(L) .
nlxr‘
Ul = E s (3.2)
A<r)n Xr
x n.XY



n, = the number of observations in the ith class, (3.3)
n =m0, + oee n_ o, (3.4)
and the matrices A(k) were defined in chapter II.

Clearly the covariance matrix of the observations is a block

diagonal matrix

2 2
o ¢ Diag {(In + le), ey (In

H= + YlJ)}, (3.5)
1 T . .
and
Y Y
-1 : 1 1
H = = Diag {(I - ——— ) ey (I = +——I}. (3.6)
l-i-nlyl ? l-l'nryl .

To derive a confidence region for Yy via Hartley and Rao's [10]

method we will choose W as a base matrix, where

W= [11U§], (3.7
Ta@ : ]
nlxr 1
% = .
U7 | aG-1) (3.8)
n xr-1
-1
st
T
e -in xr~l
A= L8, eee 811 (3.9)
oy
§, ==———— , i=1, 4. 5, T (3.10)
i l+niyl

The normal equations for the least squares estimates of u and

the dummy null vector B are

40
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WH W

]

!
=
WO > >

WOH Y . (3.11)

Simplifying equation (3.11) we get

16, ¥
Si i./ni
6l(Yl./nl = Y /ar)
. -1 t " '
0 Diag{8;,...,8 _ }+8 "aa!| | 8 | See1 it /m Y /a)
, _ ‘ r-1 r’
(3.12)
where
Yi = the total of the observations in the ith subclass.
It is trivial to verify that
P -1
(28 0
-l ""l » .
[W'H "W} = (3.13)

N -1 -1 -1
0 Dlag{él s ees ’.§r~l} (Z&i) J

After algebraic simplification we can put the solution of (3.12) in

the following form:

L8 Y, /ny

s,

. (3.14)

™y B
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The quantities Reg and Res are given by the following equations

2 2

| {251 1. /nl} 9 tzsi Yi./ni]
Reg = ~——————" 4 [Xai<yi /) - 1, ' (3.15)

Is. hy X

ty -
Res = Y'Y ZYl /n. (3.16)

i

Since the covariance matrix of (3.14) is given by

cz[w'H'lwl"l

it can be readily seen that u and B are independent. Plainly

ol
~r
|

= D1ag{6

Log.1CY

5L -1
e (Zdi) J, (3.17)

and
Ty =1 e
222 1<Y1 = Diagl{dy, ... , §__;} + 640" . (3.18)

The confidence region is based on the function .

o 5 I o

Z(Yl) B (r-1) Res * (3.19)
‘After simplifications (3.19) becomes '
Ta-1)Js,¢x, - - w?
i. /n
z(yy) = e-1) Res . (3.20)

The function (3.20) was derived by Wald [2@. He showed that
Z(Yl) is a monotonic function of Yge Thus in this case the confi-
dence region for Yl is a confidence interval which agrees with

Wald's confidence interval.



3.2 Nested Classification

The unbalanced nested classification random model is specified

by the general mathematical model

Y = 1p + Ulbl + U2b2 + e, (3.21)
where — -
Acl)nl_xr
U1 = . | (3.22)
A(r)n Xr
T.
e —n xr
U, = Diag {Bl, cee Br}f (3.23)
A(1}11. XS,
1,774
By = | o (3.24)
A(Si)n. ‘XS,
is."iln. xs,

— I S P §

r = the number of levels of the primary factor,
s; = the number of levels of the secondary factor
within the ith primary factor,
nij = the number of observations in the jth secondary
level within the ith primary level,
n., =n, + ...+ 0, s
i, i is,
1 i
n =10, + ...+t1n R
?D 1. rb

and the matrices A(k) were defined previously.

Clearly the covariance matrix of the observations is



2_2. 1 11
cH=0 [T+ Yy UlU + 72 UZUZ),

where
U.U! = Diég'{J s eee 5 J 1,
1l nl. Be
T o= N4
UZUZ Diag {Jn 5 een "Jn ‘ L.
11 s,
T
It is convenient to define
In + (Yl + YZ)J, ves YlJ.
il )
C.= —————————————————
i
' Y1 J s soe 3 Iﬁ'
is

Now it is trivial to verify that

H=Diag {Cl 3 se e ,Cr}-

Following Rao [14] it can be easily verified that

i i
In. + 611 N 618. J
-1 i1 7 i
S i i
Gs.l J , s eoe 3 In. + 68.5,
i~ is, i
i
where 6;k is the jkth element of the matrix
: Y
i 1
A = - vy, [Diag{A.., ... 5 A, 1} +
2 il is, Yz(l+yl ?niinj)
where '
f = ’
Ai [Ail, ens 3 Ais.]’
i
1

A,, = T
ij 1+ ninz

Since H is a block diagonal matrix, plainly

1

-1 , -1 -
H = = Diag {Cl s e s Cr-}e

(3.25)

1 (3.26)

(3.27)

. (3.28)

(3.29)

44

(3.30)

‘AL, (3.30)

(3.32)

(3.33)

(3.34)
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In order to apply the pfoceduré outlined by Hartley and Rao

[10] we will choose a base matrix W defined as follows:
W= [1[U§1U§],

where

A(l)nl Xr-1
* L]
b I -
A(r_l)n xr-1
r-1l.
TS
_gr 1 n":
— —-n  xr-l

'ﬂ' = [gl’ & oo 3 Er"‘l],
E.=)mn,, A,. (L++vy, Jn,, A y~t
i ij i3 12 74 1] ?
J J
i =1, 00 , ¢,

2
A(l)n. xs.~1 ‘
il
Bi = ; .
Acsi_l)n. xs -1
is ~1"71
~dfl 1y
8 ot {n xs,-1
o io i
¥ = loggs voe s wisiwl]’

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)



i=1, 00 ; T,

l, ..., si .

(AN
]

A consequence of such choice of W is
1

Uf’ H1=0, (3.43)
¥ -1 -

Us'H 1 =0, (3.44)
. _’l ~. . .

As usual we denote by'B a dummy null vector.

We divide g into (r-1) and X(si—l) subvectors as follows

By

g = : (3.46)
B

The normal equations for the least squares estimates of yu, Bl andB2

are
TivEt 0 0 T ]
0 urt 1 oux 0 e, | =w uty. (3.47)
1 1 "1
o 0 Ukt ET K]
It is trivial to verify that
1t 1=7 ;s
Us! gt uf = Diag'{gl, ver s gr_i} + 5;1 m' o, (3.48)
g’ le??; - Diag (B}’ cIl BY , eee s BY' c;l B4}, (3.49)
BY' c;l Bf = Diaglu;y, +r- “is -1} + wl 'R (3.50)

is,
i



To obtain W'H—lY it is convenient to write

T8 3, oo, 8 37

11 1si
le =1+ —£ ——————— ;—-—-— , (3.51)
+ s Jy vee 5 8 J
s.1 8,8
i ii

11 lsi J
B, A" Bl = | m———m ' (3.52)
4 l. .
&t 3, ..., 80 3
s.1 s.8
1 1 1 |
YU o= [Y) , ce. Y;], (3.53)

where Bi is defined by (3.24) and Yi is the sub vector of the obser-

vations in the ith primary level.

After simple algebraic manipulations it can be easily verified

that
- " .
w,, (Y, + Y, , ]
. il ll'/nil,' 1"/nil)
o w, (Y, + ¥, )
is, lsi'/nis. l°°/nis.
S l l ondn
where
w
i Y..
11 g (nlj) ij.
3y ij
Y, = R (3.55)
i.. Y2(1+Yl ? wij)
J
Yij = the total of the observations in the jth secondary level

. within the ith primary level.

Finally let us define
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..._]_ . . )
X; = :L'»c:i Yi, (i =1, 00, 1),

It is easily seen that

W, .
) Hél'Yij'
1+ Yl § wij

(3.56)

(3.57)

We can write the right hand side of the normal equations -

(3.47) as follows:
1' 5y
Wty = U3 gty | .

vy’ gty

It is trivial that

1"ty -

-1
¥
Ul HY

U5'H Y =

where

i ijtrij.

j .

X, = (1 + le“"iﬁ)—l w, (Y.. /n.,
J

lJB

piedy
n_. Trj.
N
Iw :

. ]
3 J

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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“i1
—= (Y, - Y, )
nyq 11./nil 1si./nisi
B?{'C;l Y = R - (3.63)
wis*
= (Y, -Y. 0D
is, 1si"/nis. 1Si'/?isn
1 - - .
b o

To find the solution of the normal equations we need to find

ae iy 0 0 B
G e Al 0 @ o™ o ) (3.64)
| o o @y oyt
_
e

It may be verified by direct multi?lication that

’ I NS R | -1 -1
% & = [
. (U§ H U Diagl& ™, ..., €7} ‘(zgi) J, (3.65)
S S B cen=lo =1 IR B |
'<U§ H Ug) = Dlag{(Bi N Bf) s ses ,’(Bi C. B?) "} (3.66)
_where
| I O AP | -1 . -1
(B3 'C, BY) Dlag{wil, cer s “isi—l} (§ )T I (3.67)

Now it can be easily verified that the solution of the normal

equations is
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p> T

™Wwr =
v

w >

where

=
1]

(3.68)
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a, = il ) (3.70)

After considerable algebraic manipulations we can write the

quantities Reg and Res as follows:

X __;L

- 1j 2
7 [z
1+ Y1 E ml

I w,, i G + Yl z wy )(Z W, ).

N

Reg =
. 1 i
j_ i j 4
1.'+'Yl§wij '

e ]

P~

J X s
1+ Yl Z oW, id E %
- + w, (Y, . )
PRt o smgm HTR/Ry
i 1+ Yl X mij :

j .

W, ., 2
B-—l—lY..]
*n,. 4.
“Z 1]

s (3.71)

Res ) v {n . (3.71)

We partition the covariance matrix of the estimates (3.68) as

follows:

L’



52

o -
L, o 0

L =1 0 L 0 , (3.72)
] 0 0 Ly3(¥)

where (
_ -1 (3.73)
;g & =Q &) '
» -1 ..-1
Loy (V) = (UF' B UH) (3.74)
- %1 -1 -1
233 () = (ug' B U (3.75)
Let us note first that the estimates ;, él and éz are  indepen-
dent. This is obvious from (3.72). Thus |
222.1_3 () = 222 & v(3-76)
and if we let
222 (v) 0
1 () = , (3.78)
0 .233 )
then o
Lm=1. (3.79)

Following Hartley and Rao [l0]we construct the foliowing confi~
dence regions for Y1 and Yyl

4(1) A confidence region for Y, and Y, may be based on the

function



S A e
(= Js)(81L,, ("B, + 85 55 (1)8,)

2. (Y, 5Y,) = —=
171772 (ESi - 1) Res
It may be verified that
. {(n - Zs.) C
z, (YY) = —= —
l k]
“sti - 1) Res
where "
y iy
Z 3 ;0. i3
3 13 Z 1+ Yl Zwij
RN S D) I
1 Y w; w, S !
1 i
Jj. J 3 Z 1 g
il+ yl,Z wi.
3 Jd
w,.
z._]:.ly
» 5 jnij ij. .
+ z Z mlJ(Yij./n.,) - Z
i ij i wij
) h

(2) We can also use the following functions to comstruct

confidence region on Y1 and Yol

~ —l ~
- ¥
Z (v y.) = (@, - 258 Ly, N8y
2\¥ Y2 (r-1) Res ?
A confidence reglon for Y2 may be based upon
z,(v,) = k)
32
(Es -r) Res
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(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

It may be easily verified that the functions.Zz(yl,Yz) and Z3(Y2>

simplify to
(@ -1s) A

L

ZZ(Yl’YZ) = (r-1) Res >

(3.85)
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(n - )s.) B
(Y ) = L L
z3 2 (z-1) Res ? (3.86)
where
w. .
D Z ij ¥ 2
W, . 2 _ n,. ij*®
2__3.1 Y 2___}_1______.
g ij. 7 1+ Yy Twi,
i 1+ Yy §wij)(2wij) z Z lli ——
i 1 7743
w, . 2
Y =Ly
B=3Tu, ¥, /o - p=ii (3.88)
> & TijTiilii : ’ )
ij i z w,,
> 43
3o -
(3) Finally, we can construct a confidence region based on the
function

(Js; - ©) 8] I3 (1) 8,

Z,(Y,5Y,) = = - (3.89)
4311072 ) >
(r_l)Bz 233 (Y)Bz
or its inverse
Zo(Yeav,) = 12, (v oy) 17T (3.89)
5812197 ARSEAY) . .

We will show that Z4(y1,y2) is distributed like F distribution.
Since Zzz(y) is the covariance matrix of Bl, it follows immediately

that the quadratic form

~ —l ~
= at
ql Bl 222 <Y) Bl (3990)
follows the chi-square distribution with (r-1) degrees of freedom.

Similarly, the quadratic form
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R -1 R
_B' (M8
9y = 55 “33 2 (3.91)

follows the chi-square distribution wit (Xsi —'r) degrees of freedom.
The quadratic forms 9 and q, are independent sincg él and éz are
independent. Thus Z4<Y1’Y2) follows the F distribution with (r - 1)
and (Zsi ~ r) degrees of ffeedom.

Thus either |

Z4(Yl,y2) <F (o3 r -1, Zsi f ?)f (3;92)
or

Zo(y;,7,) SF (@5 [s; -7, - 1), (3.93)

defines a confidence region for Y1 and Yor

We now turn to Wald's [22] confidence region. We assume that
the model (3.21) is a fixed effect model. To find simple least
squares estimate of gl and b2 we need to reparametarize the model

as follows:

= % Bk % '

Y = 1y + UF b¥ + Uk by + e, (3.94)
_ where _
A(L)
Ui = o s (3395)
» A(x-1)
—nul i)
. ~n xr-l

US = Diag {B% , ... , Bﬁ;}' , (3.96)



A T
BE o= | .
i
A(r-1)
—n;l 1D!
. = -n =xr-1

* @

i
P
f

Diag TBf s eae s B?}» ,

7
AL 1
= . >
A(si—l)
B -i 1 le. .
Lt i -n, xs.-~1
l. 1
D' = [nl. 3 ese nr_l.],_"
! =
Di [ni s ese s nis.—l]’
1 i

and the matrices A(k) were defined previousl&.

Let bl and b2 be the simple least squares estimates of b
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(3.95

(3.96)

(3.97)

(3.98)

(3.99)

and b%

respectively. It can be easily verified that the normal equations

A A

which bl and b2 are their solution are



Ta 0 o | [ ul
SR § * "
0 Ui Ul 0 bl
0 UsTU% b
2 72 2
L O
Y
n, (Y )
1. l"/nl. r;../nr'
n (Y )
-1 r—l../nr_l r../nr.
n., . (Y - X )
11 ll./nll lsl'/nls
. . 1
n (Y. -Y
lsl—l lsl—l./nlsl lsl./n
n_. (Y - )
rl rl./nrl rsr./nrsf
n ¥Y_ _ v -
| TS, 1 TS, l°/nrs;}, rs
—
where
nLT X ) Bi3
i ]

Us' U% = Diag {n vew ,m. . } e+t DD
1 1 1. ? A I T, ®
%% Uk = Di (B! B% %7 Bk

LE U5 = Diag {Bl BY 5 veo Br Br} »

B%' B% = Diag {n e a7t 5 + n—l D.D!

i il ° ° 2 isi isi iTd
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(3.100)

(3.101)

(3.102)

(3.103)

(3.104)
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It may be verified by direct multiplication that

n 0 0 -1 | n 0 0
*T Uk : -

o g o = o @ Lo |, 3109
%7 Uk I -

0 o U3 U3 0 0 R

- : _ - 252 |
{
where
(W' UDH = piag {(n]. , ..., L} - alh U, (3.106)
(ux® )™t = pia {(B*' e (B*'B*)"l} (3.107)
3 Y3 8 WABT P70 s eee n ABLB) D .

(B?‘ Bi}-l = Diag {n;%, cee n;i'_l} - n;% J. (3.108)

- 1

Now it is trivial to verify that the solution of the normal

equations is

y Ty

(3.109)

o
i
H
)
’—l
~
)
"

>
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and
c? o= ol W) Ywraw e wy Tt (3.110)
'is the covariance matrix of (3.109).
Following Wald [22] we can construct two confidence regions:
(1) We can construct a confidence interval for Yoe Let us note

~

that the covariance matrix of b2 is

2 2=l | '
o T(b,) = o (U§'U$) ™ (U5 HUE) (U5'UH . (3.111)

Wald's confidence interval for Y, can be based on

R A gn
b2 {T(b,)] b

zl(yz) = 2 2 Z s (3.112)
.(Zs:.L ~ r) EMS

where EMS is the Error Mean Squares of the analysis of variance

assuming fixed effect model. After some algebraic manipulations we

can simplify (3.112) to [E wij Yij /n j]Z
) ’zv 3 i
g%“ﬁjtﬂjJnﬁ) -1 §“ﬁ
zl( ) = . (3.113)

sy - ) ES
In verifying that (3.112) can be reduced to (3.113) it is helpful to

note that



- | y ) -
11 ll./nll '151./nlsl
nlsl—l CY131—1./nls _E'Ylsl,/nlé-)
17T R
(UxTUx YD = y .
(U5 '0%,)b, . |
)
s
r

n ., (¥ -Y
rl rl./nrl

n
rsri/ :

n

PR ¢ A =X
rs_ 1 Ts_ l./nrS 1 rsr./nrsl)

and
X % = Diag {B%"' % %7 %
U5 HU% = Diag {Bl C,B¥ , ... , BX' C, Br}
e 2 -1 -1
®? R o= i
BY' Cp Bf = Diag oy wy s eee s myg g Wig 1)
: B 171 i i
+ mjl D.D! .
is, 1 l

Fu?thermore, we note that (3.113) is identical to (3.86).
(2) We now construct a confidence region for Yl and 72.
readily verified that the covariance matrix of bl is
2 e} i 2 _l ' . A—l,.;,‘.
= I %7 % %0 Uk
o F(bl) o} (Ul Ul) (Ul H Ul) (Ul Ul) .
It is readily seen that

Uk "HU# = Diag'{nllpl y see

-1 .
3 'HUR } o+ n_p D',

’nbifri
where
i

2
p; =1+ ypm + Yzznij/nig .

Wald's confidence interval is based on the function
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(3.115)

(3.116)

It is

(3.117)

(3.118)
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~ ) ‘ll\
by [T(b.)] b
_ 1 1 1
ZZ(Yl’Y2> = TGeoD) BB . (3.119)

We can simplify (3.119) to
-1 - 2
i 2 (} QilY. )

la L
p i.. 2 p=in
i i. i, .
Zz(Yi’Yz)' T (-1 EMS - (3.120)

It is interesting to note that (3.120) may be derived in a differgnt

way. Let
5., Y. /n, (3.121)
1‘
then §l s soee g Yr " are multivariate normal variables with mean lp
aﬁd covariance
02 A= 02 Diag'{ 0., s vee 5 o ."} . t3.122)
l/n1 ' r/nr :

It is trivial to verify that the least squares estimate of j is

_l—
R Z ngpy Yy,
_ 1
H -1
i

. (3.122)
znip '

We define the Conventional Error Mean Square to be.

)y ,07tY. T2
] i1 Lloo
i

1 S =1 =
e== Lomp Y - (3.123)
o} =1 z n.p7

It’is well known that & is distributed like chi-square variate with
r~1 degrees of freedom. We note also that § is the numerator of
(3.120). Thus we may derive (3.120) without reference to F(bl).

This procedure follows very closely Wald's [20] approach for
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constructing confidence interval for Yy in one way classification.
Another way of constructing confidence region for Yq and Yy is
by "combining" the confidence intervals (3.113) and (3.120). That

- is, a confidence region for Y1 and Yé may be based on the function

b
Sy T -1 1

Z,(YqsY,) = . (3.124)
312 (fs;-1) ENMS
This procedure requires the inversion of the followinglmatrix
us' H U -U%' H U2
1 1. 1 2 (3.124)
%1 % % %
_FZ H Ul U2 H Uﬁ

It is difficult to obtain such inverse because Ui‘ H U§ is different

from zero.

3.3 Summary and Conclusions

A method described by Hartley and Rao [10] is used to derive
confidence region, R, for the ratios of variance components, Gi,
for various experimental designs. First we consider balanced
designs (Chapter II). For all the cases the least squares
estimates of the fixed effects and of the null vector 8 were
identical to the simple least squares estimates. However, the
confidence regions derived via Hartley and Rao's [10] method was
different from the traditional analysis of variance method iﬁ the

case of the Two-way Classification Model II without Interaction
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and the Balanced Incomplete Block Design. Such differences arise
because the quantity Res defined by equation (1.11) was different
from the traditional Error Sum of Squares of the analysis of
variance. A necessary and sufficient condition‘fbr the equality
of the quantity Res and the Error Sum of Squares of the analysis
of variance was not derived.

In Chapter IITI we considered two unbalanced designs. For the
one-way unbalanced design Hartley and Rao's [10] procedure was
identical to Wald's [20] result. Our results fof the unbalanced
nested classification are the first confidence regions for the
ratios of variances to be derived from unbalanced ﬁested data.

It is well known that every confidence region can be trans-
lated into a test of hypothesis., In the terminology of the test
of hypothesis, all the confidence regions considered in this work
are "similar region" confidence regions. To study the properties
of these confidence regions it might be easier to study the
properties of the associated tests first.

Finally we mention that given a confidence region for a set
of parameters it is possible to derive a confidence region for
any funcﬁion of these parameters. This»fact can be used to con-
struct a confidence region for various measures of heritability,
hz(yi), Strictly speaking such a problem is one in mathematical
‘programing,

A conservative lower confidence point for hz(yi) can be

computed from the problem



min hz(yi)
£
subject to Y; € R and the upper confidence point from
2
max b (y,)

Yy

subject to Y; € R. However, since ¢ is small the above problem can

be easily solved by accepted method of numerical analysis based on

scanning techniques.
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